CMEs: Fermi Paradox solution?

One of the theoretical solutions to Fermi’s Paradox is the Rare Earth theory.

Fermi’s Paradox, if you’re unfamiliar, is the quandary that asks if intelligent life is probable in the galaxy and/or universe — why have we not seen evidence of it? (Aside from our own?)

There are so called “solutions” to this question and you can research them if you care to, but the one that I find most compelling is the one that supposes “Earth is rare.” Isaac Arthur’s Youtube channel has a Fermi’s Paradox compendium video which explains, in detail, this and the other solutions (Video).

There is one aspect of this Rare Earth solution that seems to go unexamined. And it is this: That Coronal Mass Ejections, CMEs, will have a severe and recurring negative affect on any technologically advanced society.

Humanity has experienced just one CME of a size to do it serious damage. You may or may not be familiar with the 1859 Carrington Event and the government reports on the next CME that will hit us (as well as the July 2012 CME that barely missed us), but you should.

CMEs have the potential, some think slight, but I think enormous, to disrupt electricity generation and transmission. I believe few people, if anybody, have theorized the extent to which a CME (every few hundred years — or more frequently) will have on an advanced technological society…

Or what it will have on OUR advanced technological society. Our electricity dependent civilization has never experienced a CME of Carrington level.

The solution to Fermi’s Paradox would hold that CMEs slamming electricity enabled civilizations anywhere in the galaxy or universe, over and over, each time knocking them back hundreds of years of their progress, wasting resources (like irreplaceable fossil fuels) will, in the end, suppress such civilizations from becoming electro-magnetically communicating / space-faring species.

Periodic coronal mass ejections would continually reset alien intelligence species’ societal progress. After every CME that wipes out their electricity generation and transmission capability their society will collapse. Over and over. CME’s happen again and again, in cycles.

The next massive Carrington level CME to strike Earth is going to, potentially, collapse our technological society. If a pair of massive CMEs were to hit during our summer, 10 to 16 hours apart — say goodbye to civilization in the Northern Hemisphere.

Here’s a theoretical scenario that explores this possibility:
Blue Across the Sea – Epilogue

Most experts who analyze the impact of CMEs, I think, underestimate the destructive force they pose. I believe that, specifically, the millions of miles of wire strung in every city and state, in every business building and home, in every subway, train station, in every airliner, in every container ship, in every facet of society — WILL be affected. WILL react to the magnetic plasma attack that a CME represents. And that this reality, here-to-for unexamined and unrealized, will collapse human society.

When it happens to us then it could happen to any galactic intelligent species. This, in my opinion, represents a valid solution to the Fermi Paradox.

11 thoughts on “CMEs: Fermi Paradox solution?


    “Astronomers have observed that our Sun could be a potential threat to human civilization due to a phenomenon where the Sun ejects large bursts of energy called a “superflare.”

    Superflares are the extreme versions of a typical solar flare — a sudden flash of increased brightness of the Sun and usually observed near its surface and close to a sunspot group. Powerful flares are often, but not always, accompanied by a coronal mass ejection. Even the most potent flares are barely detectable in the total solar irradiance.

    However, unlike the typical solar flare, superflares are much stronger and powerful. Astronomers warn that a superflare could burst energy from its surface that could be seen light years away that could harmfully affect life on Earth.

    Initially, scientists believed that superflares were only limited to be an occurrence in younger stars. However, Yuta Notsu and his team of researchers published their latest study rejecting that initial assumption and discussed otherwise in The Astrophysical Journal.

    The study indicated that superflares were a natural and frequent occurring phenomenon on younger stars due to its small size and high energy. These younger stars would often burst large amounts of energy. Moreover, it was then believed that as these stars aged and became suns, superflares would incrementally decrease and eventually stop.

    “When our Sun was young, it was very active because it rotated very fast and probably generated more powerful flares,” said Notsu in Boulder. “But we didn’t know if such large flares occur on the modern sun with very low frequency.”

    However, a discovery from the results provided by the Kepler Space Telescope, a NASA spacecraft from 2009, found something odd about the stars it was observing. In rare events, the light from distant stars seemed to get suddenly, and momentarily, brighter.

    Notsu explained that normal-sized flares are frequent on the sun. But what the Kepler data was showing seemed to be much bigger, on the order of hundreds to thousands of times more powerful than the most giant flare ever recorded with modern instruments on Earth.

    The results should be a wake-up call for life on our planet, said Notsu during a visit at the University of Colorado Boulder.

    If a superflare erupted from the sun, he said, Earth would likely sit in the path of a wave of high-energy radiation. Such a blast could disrupt electronics across the globe, causing widespread blackouts, and shorting out communication satellites in orbit.

    This could be a massive threat for life on Earth, given that most of society is contingent along with the dependency on technological devices. Moreover, Notsu does not only refer to smartphones and Wi-Fi connectivity. Instead, a single wave of such superflares could cause catastrophic events on Earth.

    “If a superflare occurred 1,000 years ago, it was probably no big problem. People may have seen a large aurora,” Notsu said. “Now, it’s a much bigger problem because of our electronics.”

    Primarily, orbiting satellites would first be affected and render them useless—making all communication devices on Earth, including cellular phones, tracking services, GPS, radios, etc., to stop functioning. Moreover, all electronic-dependent technology would also stop working. This could mean aircraft are crashing all over the place, hospitals without operating equipment, or even plumbing and electric services become useless.

    To make matters worse, researchers are also in the dark with regards to information about superflares. Currently, researchers don’t have an exact explanation of why superflares occur. Moreover, they cannot predict when a superflare could exactly arise, making it impossible to prevent and prepare for such situations.

    To understand more, Notsu’s team ran new spectroscopic observations with the Kepler data, data from the European Space Agency’s Gaia spacecraft and the Apache Point Observatory in New Mexico.

    Over a series of studies, the group used those instruments to narrow down a list of superflares that had come from 43 stars that resembled our sun. The researchers then subjected those rare events to a rigorous statistical analysis.

    The team writes: “We need more studies to clarify the properties of superflare stars on Sun-like stars and to answer the important question, ‘Can our Sun have superflares?’” Also, “the number of old, slowly rotating Sun-like superflare stars [observed is] now very small, and the current statistical discussions are not enough.”

    Fortunately, the team also told that superflares for older stars or Suns may not occur as frequent compared to younger stars. “Our study shows that superflares are rare events,” said Notsu. “But there is some possibility that we could experience such an event in the next 100 years or so.””


  2. “Although our medieval ancestors would not have noticed solar activity and solar storms much, apart from occasional displays of aurorae, those storms left some environmental signatures.

    Solar activity changes the intensity of high-energy particles hitting the upper atmosphere. When these particles hit atoms of oxygen or nitrogen, they create new elements, some of them radioactive.

    These new elements get carried down in rain and snow to the Earth’s surface. In most places they just diffuse off into the soil. However when these atoms fall on permanent ice caps, they end up being trapped in a layer of surface ice.

    Then, the following year another layer forms on top, and so on, so that the icecap contains a historical record of solar activity. Scientists have extracted ice cores yielding solar activity records dating back to remote historical times.

    When we look at these ice cores, we can see the annual layering quite easily, so we can scan along the core looking for particular elements, counting the layers as we go. Doing this we can track solar activity back in time thousands of years.

    It has been found that although our hi-tech free ancestors never noticed, there have been solar storms far larger than anything of which we had prior knowledge.

    One hit the Earth in 660 BCE (BC). Others occurred in 775 and 994 CE (AD).”




    The long-ago giant impact that led to the formation of Earth’s moon also helped make life as we know it possible on our planet, a new study suggests.

    More than 4.4 billion years ago, scientists believe, a Mars-size planet dubbed Theia slammed into the proto-Earth, blasting huge amounts of material from the pair into space. Some of this violently liberated stuff eventually coalesced to form the moon, while other bits and pieces were gobbled up by our bashed and bleeding world.

    Some of this newly incorporated material turned out to be pretty important. According to the study, the catastrophic collision provided Earth with most of its carbon, nitrogen and sulfur, key chemical building blocks of life as we know it. [How the Moon Evolved: A Photo Timeline]

    “This study suggests that a rocky, Earth-like planet gets more chances to acquire life-essential elements if it forms and grows from giant impacts with planets that have sampled different building blocks, perhaps from different parts of a protoplanetary disk,” co-author Rajdeep Dasgupta, a professor in the Department of Earth, Environmental and Planetary Sciences at Rice University in Houston, said in a statement.

    Carbon, nitrogen and sulfur are “volatile” elements, meaning they have a relatively low boiling point and can be tough for nascent planets and moons to hang onto. A number of other life-important chemicals, including water, are volatiles as well.

    “From the study of primitive meteorites, scientists have long known that Earth and other rocky planets in the inner solar system are volatile-depleted,” Dasgupta said. “But the timing and mechanism of volatile delivery has been hotly debated. Ours is the first scenario that can explain the timing and delivery in a way that is consistent with all of the geochemical evidence.”
    A schematic view of Earth’s accretion that led to the origin of some of Earth’s life-essential volatile elements, including carbon, nitrogen and sulfur.

    The researchers, led by Rice graduate student Damanveer Grewal, performed laboratory experiments at high temperatures and pressures, mimicking the conditions present during planetary-core formation. They looked at how much carbon and nitrogen got incorporated into the simulated core at sulfur concentrations of 0, 10 and 25 percent, respectively. (Theia may have had a sulfur-rich core. And some scientists have posited that sulfur blocks core uptake of carbon and nitrogen, pushing these elements out into the mantle and crust, which together are known as the “bulk silicate Earth.”)

    The team also ran computer simulations, exploring more than 1 billion different scenarios to better understand how Earth got its volatiles.

    “What we found is that all the evidence — isotopic signatures, the carbon-nitrogen ratio and the overall amounts of carbon, nitrogen and sulfur in the bulk silicate Earth — are consistent with a moon-forming impact involving a volatile-bearing, Mars-sized planet with a sulfur-rich core,” Grewal said in the same statement.

    The results, which were published online Wednesday (Jan. 23) in the journal Science Advances, could have applications beyond our own planet, helping scientists gain a better general understanding of the conditions necessary for life to arise throughout the cosmos.

    “This removes some boundary conditions,” Dasgupta said. “It shows that life-essential volatiles can arrive at the surface layers of a planet, even if they were produced on planetary bodies that underwent core formation under very different conditions.”

    Mike Wall’s book about the search for alien life, “Out There” (Grand Central Publishing, 2018; illustrated by Karl Tate) is out now. Follow him on Twitter @michaeldwall. Follow us @Spacedotcom or Facebook. Originally published on



    Solar flares come and go and the Earth is showered by our Sun with a constant stream of powerful and potentially dangerous particles.

    One major solar flare event occurred back on Sept. 2, 1859, and was one of the most powerful solar events ever witnessed by humans.

    Richard Carrington, a British astronomer, was witness to a visual white light flare, which hurled a huge solar Coronal Mass Ejection, or CME, towards the Earth.

    This powerful CME reached the Earth in a near record time of some 17.6 hours — much faster than many of the other solar storm particles.

    The Earth was to be hit with one of the most powerful displays of solar radiation in all of recorded history. This CME was so powerful that the aurora was seen in latitudes as far south as Mexico and the equator.

    Equally amazing is the fact that miners in Colorado witnessed the brightest of aurora, thinking that the sun was about to rise, as they started to prepare breakfast for the camps.

    In this pre-digital world, the best form of long distance communication was the telegraph.

    Many railroad telegraph operators saw power lines and telegraph lines spark with the induction of this solar particle storm, cutting off communications.

    If this had been today, we would have witnessed the near total destruction of any power grid or cell phone communications not shielded or placed in Faraday cages or bags.

    Solar flares are measured at the top levels with the designation of X!

    Solar physicists tell us that the 1859 Carrington Event, was classified as an X 45 on the flare scale.

    They also tell us that this type of flare may occur with a frequency of nearly 100 years!

    They also tell us that the most powerful flare that our sun could produce, due to its size and classification, would be an X 200 flare. These monster flares are thought to occur once every 15,000 years.

    Another of these super flares would be an X 100 flare, which has the possibility of occurring once in every 500 years on average.

    We are now at the end period of Solar Cycle 24 and soon to be entering the next cycle, in 2019, Solar Cycle 25.

    Solar Cycle 25 will peak again in the year 2025!

    During the past few cycles, the Nov. 4, 2003 “Halloween storm” produced a flare which did not hit the Earth directly, but just passed us by. That storm was rated as an X 35 on this power scale.

    The simple point is this: We here on Earth depend so much on the new digital technology of the day and we are most susceptible to the massive damage which will come from another Carrington Event!

    The power grid and other critical infrastructure need to be protected as best as possible, along with a greater study of our nearest star, the Sun!

    The Sun has been shining for some 4 billion years and should do the same for another 4 billion years!


  5. QUOTE:
    On Sept. 10, 1770, the skies above China, Korea and Japan turned an eerie red, and for eight more nights these glowing red auroras lingered.

    For nearly three centuries, this mysterious event was lost to history.

    Now, researchers poring through palace diaries and other historical documents from East Asia have rediscovered the bizarre phenomenon, and have proposed a likely cause: A giant magnetic storm that rivaled the most powerful one on record, the so-called Carrington Event of 1859. (Geomagnetic storms occur when solar eruptions hit Earth’s magnetosphere, the shell of electrically charged particles trapped by Earth’s magnetic field.)

    If a similarly massive magnetic storm hit Earth now, it could wreak havoc on power grids around the planet, researchers said. [The Sun’s Wrath: The Worst Solar Storms in History]
    Mysterious event rediscovered

    To rediscover this cryptic event, Hisashi Hayakawa, a historian and astronomer at Osaka University in Japan, and his colleagues investigated historical records from China, Korea and Japan from the 18th century, looking for mentions of auroras. (Auroras, the radiant displays of colors in the sky known as the northern or southern lights, result from solar particles striking Earth’s magnetosphere. They are usually most visible near the planet’s magnetic poles, but when they occur at lower latitudes, far from Earth’s poles, they can reveal evidence of geomagnetic storm activity.)

    These types of “historical documents can let us trace back solar activity for millennia,” Hayakawa told Live Science. For instance, records of auroras can be found in Babylonian astronomical diaries from 567 B.C., he said.

    The team also examined sunspot drawings from the same period by amateur German astronomer Johann Caspar Staudacher, as well as records from Capt. James Cook’s missions on the HMS Endeavour.

    After studying 111 historical documents, the scientists found evidence of red auroras seen throughout East Asia from Sept. 10 to 19, 1770. These long-lasting auroras were noticed at low latitudes, suggesting a powerful geomagnetic storm caused them.

    The researchers also found these auroras were documented farther south by crew members aboard the HMS Endeavour near Timor Island in Southeast Asia. These findings are among the earliest known records of simultaneous auroral observations in both hemispheres.

    “Considering this event was so large, it would be reasonable to find more events not only in East Asia but also in other low-latitude areas,” Hayakawa said. As a result, the team is extending its archival surveys to areas as distant as the Middle East, Hayakawa added.

    The team also scoured historical records for drawings of sunspots, which often co-occur with geomagnetic storms. These drawings suggested that sunspots during the 1770 event were twice as large in area as those seen during the Carrington Event, suggesting they were at least comparable in strength. During the notorious Carrington Event, electrical currents in the atmosphere zapped telegraph wires and caused paper from the devices to catch fire.

    The research suggested the 1770 event affected at least as much of the globe as the Carrington Event. Moreover, the 1770 event’s auroras were seen across nine nights, while the Carrington Event’s were seen on just four nights.

    “The events in 1770 lasted much longer,” Hayakawa said.

    As a result, scientists may need to rethink how frequently such powerful storms occur, the researchers said.

    “Now we know the Carrington event was not a special one,” study co-author Hiroaki Isobe, a solar physician at Kyoto University in Japan, told Live Science. “Such event occurs from time to time, roughly about once in 100 years.”
    Potentially catastrophic event

    Given how dependent on electricity the world has become since the Carrington Event, if a similarly powerful geomagnetic storm were to hit now, unprecedented damage would result.

    For instance, in 1989, a geomagnetic storm blacked out Quebec in 90 seconds, leaving 6 million customers in the dark for 9 hours, damaging transformers as far away as New Jersey, and nearly taking down U.S. power grids from the Eastern Seaboard to the Pacific Northwest. However, the Quebec event may have packed just one-tenth the power of the Carrington Event, prior work suggested.

    A 2013 study from Lloyd’s of London estimated a $2.6 trillion cost for North America if a Carrington-level storm happened now, and predicted “a Carrington-level, extreme geomagnetic storm is almost inevitable in the future.”

    “We believe we need to expect even more economic and social impacts for this kind of extreme and long-lasting magnetic storm,” Hayakawa said.

    The researchers are now looking for other historical examples of powerful magnetic storms. “We have already found another 1770-class event,” Hayakawa said.



    IN MID-SEPTEMBER 1770, THE SKY over the ancient Japanese capital of Kyoto turned crimson. Hundreds of thousands of people would have been looking up at an enormous aurora that stained huge swaths of the night sky. New research, published in the journal Space Weather, combines ancient accounts of the phenomenon with astrometric calculations to suggest that this heavenly light show may have been caused by the largest magnetic storm ever observed.

    A similar storm in 1859 caused significant disruption to communication networks across Europe and America. This Japanese storm, however, may have been as much as 7 percent larger. It’s unusual to see auroras outside of the polar regions, except in the case of particularly severe magnetic storms caused by solar flares. Written records of these out-of-place auroras are usually the best guide scientists have to where and when big space storms occurred in the past.

    To study this one, researchers from the National Institute of Polar Research worked with the National Institute of Japanese Literature. They drew information from a detailed painting in the manuscript Seikai, or Understanding Comets, and a recently discovered diary from the prominent Higashi-Hakura family. The diary describes how, late that night, “red clouds covered half of the sky to the north, toward the Milky Way,” and “a number of white vapors rose straight through the red vapor.” Based on the painting and description, and the location of the Milky Way in the sky at the time, scientists were able to determine the geometry of the aurora and, in turn, estimate the strength of the storm that caused it. “The enthusiasm and dedication of amateur astronomers in the past provides us an exciting opportunity,” researcher Kiyomi Iwahashi said in a statement.

    Massive magnetic storms present serious risks to communications and power grids, and it’s hoped this kind of work will help us understand them a little better. But it’s hard to tell just how at risk we are. “We are currently within a period of decreasing solar activity, said researcher Ryuho Kataoka, “which may spell the end for severe magnetic storms in the near future.” Only last month, however, an “extremely fast coronal mass ejection,” which could have been powerful enough to cause problems, just missed the Earth. Phew.


  7. MASSIVE EXPLOSION ON THE FARSIDE OF THE SUN: On Sunday, July 23rd 2017, a spectacular CME emerged from the farside of the sun. Coronagraphs onboard the orbiting Solar and Heliospheric Observatory (SOHO) tracked the fast-moving cloud as it billowed into space:

    NASA’s STEREO-A spacecraft, which has a partial view of the sun’s farside, identified the source of the blast as active sunspot AR2665, familiar to readers of who watched the behemoth cross the Earthside of the sun earlier this month. STEREO-A observed an intense flash of extreme UV radiation from the sunspot’s magnetic canopy:

    The intensity of the flash suggests (but does not prove) that the underlying flare might have been the most intense kind: X-class.

    If this explosion had occurred 2 weeks ago when the huge sunspot was facing Earth, we would be predicting strong geomagnetic storms in the days ahead. Instead, the CME is racing away from our planet … and directly toward Mars. Compared to Earth, the Red Planet is currently on the opposite side of the sun, and apparently in the crosshairs of this CME. Mars rovers Curiosity and Opportunity might be observing the effects of a solar storm later this week.

    Coincidentally, yesterday’s farside explosion occurred on the 5th anniversary of another significant farside event: The Solar Superstorm of July 23, 2012. That superstorm, which has been compared to the historic Carrington Event of 1859, could have caused widespread power blackouts if it had not missed our planet.

    Sunspot AR2665 will be back on the Earthside of the sun a little more than a week from now. If the sunspot remains active, it could bring a new round of geomagnetic storms and auroras to our planet in early August. Stay tuned.



    FEMA Is Preparing for a Solar Superstorm That Would Take Down the Grid
    Jun 20 2017, 6:00am
    The looming threat of extreme space weather has FEMA preparing for the perfect solar storm, and an unimaginable power grid disaster, FOIA documents reveal.

    In 1859, a giant plume of magnetized plasma was flung out into space from the Sun. This coronal mass ejection (CME), the result of a massive solar flare, traveled the 93 million miles between the Sun and Earth in only 17.6 hours. Today, it’s known as the Carrington Event, and is remembered as the largest geomagnetic storm in the history of recorded space weather.

    No other storm has matched it in speed or magnitude. But that doesn’t mean we’re not preparing for the inevitability. Despite our superior ability to predict these events, the stakes are exponentially higher in a modern, hyper-connected world.

    According to unpublished FEMA documents obtained by Government Attic, a FOIA database and non-profit organization, the Department of Homeland Security agency once mapped out a disaster plan for the occurrence of another geomagnetic “superstorm,” noting that the rare—yet “high-consequence”—scenario has “the potential for catastrophic impact on our nation and FEMA’s ability to respond.”

    When the shock wave of accelerated particles arrived on September 1, 1859, the disturbances to Earth’s magnetosphere were so great that telegraph communications across Europe and North America went on the fritz. Sparks leapt from telegraph infrastructure, and machinery was so inundated with electric currents that operators were able to transmit messages while disconnected from battery power. Compasses wiggled, and brilliant auroras were reportedly seen as far as the Caribbean.

    FEMA predicts that a geomagnetic storm of this intensity would be “a catastrophe in slow motion,” though not unmitigatable. Space weather events happen all the time, and many are harmless; an event causing radio blackouts, solar radiation storms, and geomagnetic storms would be anomalous. Still, its cascading effects on power and communications would challenge FEMA’s ability to respond to a nationwide crisis, thus making this exercise an important one.

    “These things tend to come in clusters, so just when you’re on your knees, another one hits. They’re really the only naturally occurring catastrophe that can come in these successions,” James McAteer, an astrophysics professor at New Mexico State University, told me.

    First to feel the impact would be high-frequency (HF) networks, such as some aviation and long-distance military communications. As X-ray and ultraviolet radiation strike the ionosphere, a protective layer of our planet’s atmosphere, changing its conductivity, the radiation would absorb radio signals trying to bounce off of it. The result would be a blackout of HF communications, as well as some lower frequency ones, on the entire daylight side of Earth.

    Within 20 minutes of the CME’s occurrence, FEMA estimates that 15 percent of the satellite fleet would be lost due to solar panel damage. Solar radiation from the incoming storm would add “3-5 years worth of exposure” to the panels, degrading older satellites to the point of inoperability. Low orbiting satellites, such as Iridium and Globalstar, may be less affected. Cellular service would be disrupted, and a loss of GPS capabilities could complicate FEMA operations.

    The widespread damage to North America’s power grid would be unimaginable. (The interconnectedness of the grid “is almost like a biological system,” McAteer said.) Transformers, which are extremely expensive to build, make power transmission possible. But when a CME sweeps across Earth, these towers, designed to handle AC currents, are instead flooded with DC currents. This may cause them to overheat, melt, or even explode, as was the case in 1989 in Quebec, Canada.

    “What’s scary are these cascading effects,” Justin Kasper, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics, told me.

    “The average big American city has several days of food for people to survive. We use GPS and computers and trucks to do real-time delivery now, but if you lost all power in one city, what would you do? The problem is trying to move more than 100 million people when there’s no [unaffected] nearby city to evacuate to.”

    At the time of the CME’s arrival, a G5 geomagnetic storm alert—the highest on the space weather scale—would be in full effect. Life as we know it would pause. Cellular towers would begin to fail. Anything reliant on local power, from your cellphone charger to critical infrastructure, would be inoperable. This includes “last mile” communications as well, such as cable TV or internet.

    A separate, 2008 report from the National Academy of Sciences (NAS) theorized that a “moderately severe” geomagnetic storm could leave 130 million Americans without power. According to FEMA, power grids on the the east and west coast of America would be hardest hit.

    A moderately severe storm would cost the US economy $2 trillion in total, and recovery could take up to 10 years, estimated NAS.

    The mere existence of FEMA’s report, however, proves that space weather is a big enough threat to warrant action; something that hasn’t always been the case.

    “It’s good to have civil authorities paying attention. It’s natural. People are using cellphones and GPS all the time, so [these threats] are more important, objectively. We shouldn’t overemphasize them, but it’s the way the world is going,” Marco Velli, a senior research scientist at NASA’s Jet Propulsion Laboratory, told me.

    Under the Obama administration, the White House’s Office of Science and Technology Policy released new guidelines in 2015 for enhancing space weather preparedness. The action plan required data sharing between government agencies, and called for more international collaboration. That same year, NASA launched the Deep Space Climate Observatory (DSCOVR), a satellite that served as a “space weather buoy.” President Drumpf’s proposed budget for the agency would cut funding for Earth-facing instruments on DSCOVR prior to the end of the mission.

    Earlier this year, the Space Weather Research and Forecasting Act, which intends to follow in the steps of the Obama administration’s plan, was introduced by a bipartisan group of senators. It has yet to pass the House of Representatives.

    “Things are definitely moving in a direction that makes me feel more comfortable,” Kasper said. “But we’re not there yet.”


  9. Dear Rebecca Boyle,

    Thanks for writing the NBCNews article:

    I realize your background as a journalist may not provide you with the depth to answer the following questions, but, your pursuit of the information and the tracking down of the individuals whom you could interview may give you an even better broad-view of the situation at hand.

    I’ve studied, from an armchair I’ll admit, the topic of CMEs and the devastation they might cause. I’ve written essays here and there on the topic and have even written a fiction narrative on the subject (as a prologue to a novel).

    There is one piece of the puzzle I have yet to see discussed regarding sun storms, which is:

    If the coronal plasma which induces incredible currents in electricity conducting wires and conduits can do so to a nation’s electrical grid — why can’t the same induction currents be generated within other massive wired systems?

    Take any common building in any city on the planet. Imagine the miles of copper wire that thread through the building. Not just electrical wire, but communications wire too. And consider every small in-house or in-business transformer or power supply with the hundreds of meters of copper wire wound into coils. Additionally, consider the power generation transformers and generators themselves — not just the grid that connects them but their own miles of wire wound tight into massive coils.

    Everyone of these, I believe, is subject to plasma induction currents.

    What happens when your own home’s substantial set of power supplies and wire networks are buzzing with undrainable electric current? Heat is what happens. Is is possible for CMEs of a size as great as the Carrington Event (or greater) to actually induce spontaneous fires in such devices and wired networks?

    I’ve never heard this topic broached.

    The world in 1859 cannot be remotely compared to the world today in lieu of our wiredness. This assumption, in concert with the fact that technologically dependent humanity has never experienced such events (which may be common through out solar history (if not galactic history)), give me pause.

    Is it possible that not only our electrical grids are in jeopardy from CMEs, but our own homes, buildings, airplanes, freighters, towns and cities are too.


  10. “Excitement is building over European plans to launch a new space-weather satellite that would drastically improve forecasts of how solar storms will affect Earth.

    The European Space Agency (ESA) hopes to send the probe to a gravitationally stable point in space known as Lagrange point 5 (L5) by around 2023, where it would provide a unique, side-on view of streams of charged particles heading towards Earth. The strongest of such eruptions, known as coronal mass ejections (CMEs), can knock out navigation and communications satellites, interfere with aeroplane navigation systems and disrupt power grids.

    Currently, probes can only look at incoming space weather head-on. The side-on view would allow scientists to measure the speed of the bursts with greater accuracy. And by observing the Sun’s surface as it rotates towards Earth, the probe would give a preview of sunspots, some of which produce CMEs, before they directly face Earth (see ‘Parking space-weather probes’).

    “An L5 mission would give something the others don’t have,” says Hermann Opgenoorth, a space-plasma physicist at the Swedish Institute of Space Physics in Uppsala. “We’re excited that it’s finally going ahead.”

    European ministers agreed to fund the first design phase of the €450-million (US$478-million) mission with between €20 million and €30 million at a meeting in Lucerne, Switzerland, last month. The space-weather mission would be ESA’s first aimed at forecasting, rather than pure science. ESA officials will ask for the rest of the funding at the next ministerial meeting in 2019.

    Technically, ESA has yet to decide whether the satellite will go to L5 or to another gravitationally stable point, known as L1, between Earth and the Sun. Andreas Ottenbacher at the European Space Operations Centre in Darmstadt, Germany, who is a member of ESA’s Space Situational Awareness Programme, says that sending a new mission to L1 is essential, but the United States looks likely to do that in the early 2020s, leaving Europe free to explore the L5 mission.

    L1 is well populated with probes, but some are ageing, such as the 20-year-old joint ESA–NASA Solar and Heliospheric Observatory (SOHO). And others, such as the US Deep Space Climate Observatory (DSCOVR), lack a coronagraph — an instrument needed to detect the onset of a CME, the most dangerous form of space weather.

    Data from NASA’s twin STEREO satellites, one of which passed through L5 during its orbit of the Sun between 2008 and 2010, suggest that a permanent craft there should cut the uncertainty in CME impact time from 10 hours to less than 6 hours, says Mike Hapgood, a space-weather physicist at the Rutherford Appleton Laboratory in Didcot, UK, who chairs the UK Space Environment Impact Experts group. The profile view would also allow scientists to see whether separate CMEs interact to build up into a much greater shockwave.

    Moreover, the L5 point would give a preview of the surface of the rotating Sun soon to be facing Earth — with benefits for forecasting and solar physics. Currently, forecasts from L1 can raise the alarm only once a ball of plasma has gone hurtling into space. With plasma speeds as high as 3,000 kilometres per second, this means just 15–17 hours’ warning — well short of the 2–3 days that power-grid operators say they need to prepare for disruption, says Juha-Pekka Luntama, who heads ESA’s space-weather team at the European Space Operations Centre.

    From its shifted position around Earth’s orbit, an L5 craft would see the Sun’s rotating surface four to five days before one at L1 would. Although scientists can’t yet predict with great certainty when sunspots will erupt, just seeing the approach of active zones could allow them to raise an early warning that a dangerous space-weather event is more likely, says Luntama.

    “It’s a little like a tornado warning in the US — you can’t tell exactly when it’s going to happen or where, but you can give a warning that there’s an increased probability of dangerous conditions,” Luntamasays. Combined with L1 data, an L5 craft would allow scientists to track sunspots for longer, which should help them to eventually work out what makes the features erupt and when, adds Opgenoorth.

    An extreme space-weather event has not hit Earth since 1859, when a CME caused telegraph equipment to catch fire. There was a comparable event in 2012, but it happened on the opposite side of the Sun so did not affect Earth. The impact of an equivalent event, given today’s infrastructure, would be enormous, adds Luntama.

    “We have been lucky that we have not been hit by a really big event,” he says. “We will be hit eventually, the question is, ‘when?’””


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s